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A simple DWBA ("Franck-Condon") treatment of H-atom transfers
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*A simple DWBA (Franck-Condon) method for calculating the probabil-

ity of transferring a light particle between two heavy ones in a collinear

collision at energies below and around the reaction threshold is

presented. The region is the important one for the thermal reaction

rates. The method is tested for two different model LEPS surfaces for H-

atom transfer with moderately high barriers. The results are in good

agreement with those of accurate multichannel calculations.

The transition probability is calculated as an overlap integral over

the reactants' and products' wavefunctions and the interaction potential.
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The reactants' and products' wavelunctions are calculated from-their

respective distortion potentials as one-term adiabatically separable

approximations. Both the distortion potentials and the interaction poten-

tials are extracted straightforwardly from the LEPS surface. The novel

feature of the approach is that for the first time accurate results for the

absolute values of the reaction probability are obtained from a simple

overlap of single-channel approximate wavefunctions obtained directly

from the respective parts of the potential energy surface for the reac-

tion.
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1. INTRODUCTION

The rates of many chemical reactions at low and moderate tempera-

tures are determined mainly by the reactive transition probabilities of

* -energies below and around the classical reaction threshold. At such ener-

gies the scattering is predominantly inelastic and the reactive scattering

probabilities are low. One can expect therefore that treating the reactive

scattering as a perturbation to the much simpler inelastic scattering

may yield a satisfactory simple method for evaluating the reactive transi-

tion probabilities in the threshold region, and hence for obtaining ther-

mal reaction rates.

Treatments of this type, known as Distorted Wave Born Approima-

tions (DWBA) for reactive collisions, have been extensively studied in

recent years.31 5 They consist in evaluating the reactive transition proba-

bility as an integral over two separate nonreactive wavefunctions, one

corresponding to the reactants' and one to the products' configuration,

and an exchange interaction operator. Further simplified versions of the

treatment, known as Franck-Condon theories of chemical reactions, have

also been frequently considered' 1 7 One simplification consists in treating

the interaction operator as a constant, which reduces the expression to

an overlap integral between the two distorted wavefunctions. Utilizing

analytical approximations to the distorted wavefunctions, usually in

terms of Airy functions for the unbound motion and harmonic oscilator

wavefunctions for the bound motion, also allows calculating an approxi-

mation to the transition probability in closed form, clearly at a further

loss of accuracy.

* At energies below the classical reaction threshold the main contribu-

tion to the DWBA integral comes from the exponentially decaying tail end
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of the distorted wavefunctions 8 As a result, small displacements-of the

tail position can lead to errors of several orders of magnitude in evaluat-

ing the DWBA integral." '1 Most of the work done using the DWBA approxi-

.mation in reactive scattering has been actually concerned with evaluating

the vibrational distributions of the products, and the absolute values of

the transition probabilities have only rarelyp' 5.12 been evaluated.

More recently19 2 3 it has been shown that the DWBA formalism can

yield accurate absolute values for the reactive transition probabilities in

the threshold region if properly evaluated distorted wavefunctions and

interaction potential are employed for the reactants and the products.

We have developed 19-21 a simple DWBA treatment of degenerate and

nearly degenerate H-atom transfer reactions in which the distorted

wavefunctions are constructed as a linear combination of two adiabati-

cally separable wavefunction. The treatment has been shown to give

excellent results for several model systems1 9-21 Hubbard, Shi and Miller23

have demonstrated that the DWBA approximation can give accurate

results in the threshold region for the H + H2 reaction, if converged dis-

torted wavefunctions, extracted from an accurate coupled channel

numerical solution of the complete Schrodinger equation for the prob-

lem, and the exact interaction operator, are utilized in the evaluation of

the integral.

In this paper we develop a simpler version of our earlier DWBA treat-

ment of the light atom transfer reactions19, 2 1 The present work is closer

in spirit and simplicity to the Franck-Condon treatmentse ' 1? but still

retains the high accuracy of the transition probabilities for the light

atom transfer reactions mentioned above.1922 It is also not restricted to

transfer between two degenerate or nearly degenerate vibrational states.

4N
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The distorted wavefunctions are constructed as single channel adiabati-

cally separable eigenfunctions of readily defined distortion potentials.

The basic features of the present model are given in Sec. II. Numeri-

- -cal tests of the treatment for model potential energy surfaces for the I +

HI and Cl + HBr reactions are given in Sec. 11I. The results are discussed

in Sec. IV.

U1. DIABATIC FORMAUSM

We consider a rearrangement collision which involves a transition

from a vibrational state n of the reactant molecule BC to a vibrational

state m of the product molecule AB,

A + BC(n) - AB(m) + C (2.1)

The Schr6dinger equation can be conveniently written in terms of the two

alternative sets of Jacobian mass-weighted coordinates fr.,R.1, frp,Rpj

appropriate for describing the reactants' and the products'

configurations:

HH =- 02 . . .,(r,R.); h.(,,,R,) =-1 a - 2 " Vo(,,,R,)

2 dRa2 2 ar.2
(2.2)

H=Hp -L~ = 1 08z

H2 + hp(rp, Rp) ;hp('p,Rp) 2 -

where ri = rj', rT' being the internal coordinate of the diatomic

molecule (i = a for reactants, P for products); TN. is the reduced mass of

the molecule i. Similarly R, = MR 1 ', R1 ' being the separation between

the atom and the center of mass of the diatomic molecule i; Mi is the

reduced mass of the relevant atom-diatom pair. h. (rt,Rj) is a vibrational

Hamiltonian for fixed Rj.
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In the asymptotic region the dependence of the vibrational Hami]-

tonian h. (r;,R) on Ri vanishes. The two h's reduce to the vibrational

Hamiltonian for a single diatomic molecule:

1 a _ .2 1 2

11

h,&c(r.) =- - + V.(r.) hA -r) + Vpfrp) (2.3)
2 Or 2d

* .~.fIn the case of transfer of a light particle lying between two heavy

'- ones (i.e., m,& << mA mc) the polar coordinates (p,69),

p = (R. 2  )% = (R2 + r2)% (2.4)

0 = tan-'(r,/R) = O - tan-'(rp/Rp) (2.5)

are, as shown elsewhere 2 1,24 particularly well-suited for simplifying the

approximate treatment of the dynamics, due to the near-separability of

the motion along the fast (6) and slow (p) coordinates. The angle 0.

. between the skewed axes in Fig. 1 equals tan-l[mp/ (m.M.)%]. The Ham-

iltonian in these polar coordinates is written as

='' I a2 I a 1 82
H. = - .p. 2p Lp 02L-.. + V(6,p) (2.6)

ap 2p Op 2p 2 0 1 2

It is also convenient to define an arc length, measured from the R. axis

in Fig. 1, and to denote the maximum arc length by sn:

s = pO; Sm = P Om  (2.7)

Asymptotically the system can be in the arrangement channel a or #.

For large values of p one can relate the asymptotic form of Eq. (2.6) to

that of Eq. (2.2) by employing the approximate relations between the

polar and the Cartesian coordinates in the region relevant to the motion

_V' of the system, namely in the regions s << sn and sn- s << sn. We have

there

oftessenmlAntergonK S n m-S«m ehv
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R,,tp , raNs; Rpfp , rpfs,,-s _ (2.8)

In order to obtain the DWBA reaction amplitude for the rearrange-

ment reaction we divide the potential energy function

V(sp) V(s,P) VP(s,p) , (2.9)

into two parts

' ,p) = Vl (sp) + V I (s(p)
(2.10)

vp -,p)= V,(s p) + V~1 (s,p) (

The distortion potential Vl(s ,p) includes all the distortion of the potential

between the atoms in the diatornic molecule due to the proximity of the

third particle but none of the interactions responsible for the rearrange-

ment. The interaction potential V1'(s ,p) on the other hand rpresents

solely the reactive part of the interaction which causes the rearrange-

ment (i = aP).

We take the nonreactive wavefunctions for both arrangements to be

the solutions of the Schrbdinger equations with the distortion potential

V.1 only.

I[ Be I - 3& - e± + V (s.P)J =n En

4. (2.11)

[ 1 2 1  1  ° 02

L. O..l.+ V,(s p)l' Ej.
[2 cip 2  2p O~p 2pF Toy2

In the absence of the reactive interactions the motion along p and along s

is nearly adiabatically separable within each of the valleys (reactants',

products') of the potential energy surface. Thus, a good approximation to

these nonreactive solutions of Eq. (2.11) can be obtained using the adia-

% batic approximationf
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4e A 1

where the X's are the eigenfunctions of the nonreactive Harniltonian (Eq.

(2.11)) for a fixed p and depend parametrically on p. They satisfy

"'"" I B2
-:""~ TS- - + V, (S.p) XV(s~ A t,%*,(.p)n

(2.13)

16jS2 + k( PA(SA C 4(A".-'.":" [2 s2 ,v(s~p) XM(s.p) = cg1(pl , p).

where we have used ds pdO in the derivative. The distorted single

channel vibrational wavefunctions X(sp) are functions of s which depend

parametrically on p. It can be readily shown that the p-dependent

coefficients r in Eq. (2.12) satisfy approximately the Born-

Oppenheimer-hke Eq. (2.14).

I .1 0 1 a:,-- - E - L,.*o)j r (p) 0:!2 ape2p 'Ep

(2 .14)

I1a2
... ,. 1i- J~ E - L-91 (p)j] (O () =0

' 2 p2  2p ap

The DWBA transition amplitude for the reaction is then given by

-* M~I~Ip~ (2.15)<.':" T a,- 0 = < I Via~>( )

where *%(IP) is the wavefunction for the reactants (products) when the

potential is the nonreactive part V, (Vk). A perturbative treatment that

includes the reactive part of the potential V11 to the first order can be

expected to give accurate results at energies below the classical thres-

erg" hold, where the reaction can be viewed as a perturbation to the nonreac-

tive scattering.

%'.--.
",..........................................................%. .
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Using the single channel adiabatic approximation (Eq. (2.13))-the T-

matrix expression (Eq. (2.15)) for going from state n of channel a to state

m of channel # can be rewritten as

T = fdp rf.(p),o7 p) f ds xO.(s,p) V(s,p)x.a(s,p) (2.16)
0 0

For every value of the radial coordinate p between the asymptotic

region and the saddle point region, the cut along the s coordinate on the

potential energy surface of a light atom transfer reaction represents a

double minimum potential. We confine our attention to such p's for which

the cut is a double minimum potential. The boundary between "reac-

tants" and "products" at any finite p is defined as the top of the barrier

s = sb (p) in Fig. 2. We now define V.1 in such a way as to be identical to

V, in the reactants' valley and to be a constant, namely the value of V. at

s6 (p) in the products' valley. Similarly, Vi is defined at each p to be VP

in the products' valley and to be VsS ,p) in the reactants' valley. That is,

v. (sI ) [V.(,p) s> s(P)l (2.17)VSPJ~I(Sb~P) s ' o

Similarly for V. (s ,p) we have

, (s Vp(,p) Ss 6 (P) (2.18)
v0 (.PJ =V,P) S < s°(p)J

The reactive part of the potential V,1(p,s) is then given by

V ! =V-V{ (i= a) (2.19)

VL. vanishes for s !g sb(p), for all p, and V I vanishes for s sb(p) for all

p. Equation (2.16) then reduces to

,= f dp rpA(p)r(p) ds XA(sp)V (sp)x.,,(sp) (2.20)
(P)

;,-.. . . . -5
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III. APPLICATION TO I + i AND CI + HBr SYSTEMS

The major part of the contribution to the integral above comes from

a narrow range of values of p near the classical turning point. We shall

-therefore approximate the solution of Eq. (2.14) by the solution of the

equivalent equation in which the potential (E - t), where i = a,# and

j = n,m, is linearized around the classical turning-point (po and pO for

the reactants' and products' channels, respectively):

(E - ~e) = (p - °)Fn

(3.1)

(E -e) o-P°)Fm

The F's are the derivatives of E 0 with respect to p at the turning

point p9. That is,19

• I, - (2/B,,)" Ai[-Bn (p - pO0)n

(3.2)
+Pt- (2/Bm)% Ai[-B,,,p-pO)],

where Bj = (2F-)2 /j and Ai is the Airy function.

The reaction probability is given by

P.= [2r [21T ] (3.3)

=(BnBm)% -

X f 2 1 X-P( .( V,(SAp)]Xn*(S~p A (3.4)

The integral over s in Eq. (3.4),

SM

=.Pp f XmP(s~p)[V 0 (s,p) - V.1(s,p)]Xn*(s~p) rlp (3.5)

!,U,

!.t.
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was evaluated numerically. The eigenfunctions X,* and Xg of Eq. _(2.13)

were also evaluated numerically using a finite element method.25 Since

V a is approximately an exponential function of p in the region around

-t.ihe turning points, a region making the principal contribution to the

integral, it can be written as

V..eV 0 e , (3.6)

where V~ is the value of VZ4(p) at the "average" turning point p8 half-

way between the turning points p* and pg. The slopes Fm and Fn for the

present system are almost identical

Fma5F =F ; _B, ~wBnB (3.7)

Eq. (3.4) can then be written as

a 2 Vnm f iBp-pOO4 e__cP&P)Ai[B(p -pRbi dp (38

which can readily be evaluated analytically 19 to yield

e i-

*(27TcF)% 1-24F e -2cFJ39

Here, A is the value of Vna(p) - VPGo) at p3O. More details on the (3.8)

integral evaluation are given in Ref. 19, Sec. V. In the case of symmetric

H-atom exchange between the same vibrational states the same formula

applies with A = 0 and, then Eq. (3.7) is exact. In the case when states n

and m are far from being degenerate, Eq. (3.4) can also be readily

evaluated analytically using a slightly different procedure 2 6

The forward and the reverse transition probabilities P . and n o

obtained from Eq. (3.8) are slightly different due to the lack of symmetry

in the approximate Eq. (3.3). The mean of the forward and reverse proba-

E'Shc a edl eeauae nltcly
9

t il

a-
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bilitics P,?JM and P,* was found to give a more accurate approximation to

the transition probability than either P,?,m or PP* alone and is used below

in the comparison of the results. Due to the closeness of the Pim and

- -P results the particular form of the mean used (geometric or arith-

metic) did not influence the result significantly.

Equation (3.8) was used to calculate the probabilities for H-atom

transfer in two different collinear systems: I + HI -. IH + I and

a+ Hir -, aH + Bhr for which accurate numerical solutions of the two-

state problem are available.2 3

The transition probabilities obtained by using Eq. (3.8) are presented

in Figs. 3 and 4 as a function of the total energy for the IHI and ClJBr

systems, respectively. The results of an accurate numerical coupled

channel solution of the CH~r problem 22 are also given for comparison in

Fig. 4. The results for the IHI system in Fig. 5 are compared with the

results of an accurate numerical solution of the two state problem.19 The

latter have been shown 19'27 to be in excellent agreement with the coupled

channel results on a slightly different potential energy surface for the

reaction for which accurate coupled channel calculations have been per-

formed. The numerical results obtained for Figs. 3 and 4 using (3.6) were

indistingishable, in the Figures, from those obtained numerically using

(2.16).

IV. DISCUSSION

The results presented in the preceding section demonstrate that the

present simplified DWBA treatment leads to very accurate results for the

reactive transition probabilities below the classical threshold. As dis-

* cussed in Ref. 20 such accuracy in the threshold region is sufficient to

4
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determine the reaction rates at low and normal temperatures for the

reactions tested as well as to explain curvature of the Arrhenius plots for

H-transfer reaction at low temperatures15,16,28

-- The present treatment is conceptually simpler than the one we dev-

ised in Refs. 19-21 since it follows a very straightforward formulation of

the DWBA distorted wavefunctions and interaction potentials. It is also

computationally simpler since it does not involve evaluation of eigenfunc-

tions of double minimum potentials. Although the eigenfunctions of the

one-dimensional anharmonic potentials are evaluated in the present work

numerically, approximate analytical procedures for their evaluation can

also be devised.

The validity of the present method is restricted to light atom

transfer reactions with moderate to high potential energy barriers to the

reaction. The present formalism hinges on the possibility of defining

separate vibrational states for the reactants and the products, and can

not be implemented if the barrier is not appreciably larger than the

zero-point vibrational energy of the reactants. The systems to which the

present formalism does apply are the ones for which the tunneling contri-

bution to the reaction rate is significant and for which the DWBA transi-

tion probabilities around the reaction threshold determine the thermal

reaction rates.

The formalism presented here is not restricted to transfer between

nearly degenerate vibrational states, since no such assumption is used in

the derivation. Comparisons with accurate numerical results are, how-

ever, presented only for nearly degenerate and degenerate systems due

to the paucity or absence of accurate results for other systems.

.-w. .... .:.-,.. - . .. .. .... , -..'-... . ....-.-...;.-.... ..:. . ...".;.:.-.. .. .,..-. .. ,:.,,,;, . .. ' ',".. , ..,
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FIGURE CAPTIONS

Fig. 1.

Plot indicating the various variables used on the text. The 'skewing

-- angle' 0m is also given.

Fig. 2.

Profile of the potential energy surface for a fixed p is depicted by the

curve ABCD. The nonreactive surfaces V! (s ,p) and V. (s,p) are given

by the curves ABCG and FCDE, respectively.

Fig. 3.

Log Pf0 versus total energy for the I + HI -. 1H + I system. The cir-

cles denote the results given by Eq. (3.3) and the solid line

represents the results of the numerical solution of the two-state

problem.

Fig. 4.

Log P&g versus total energy for the a + HBr -a aH + Br system.

The circles denote the results given by Eq. (3.3) and the solid line

represents the results of an accurate coupled channel numerical

solution of the problem.
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